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Abstract—Camera calibration is a fundamental concept in pho-

togrammetry and computer vision applications. When working
with new camera systems, it often desirable to estimate the most
important calibration parameter values reliably and easily with-
out the need for special calibration items or application software.
This technical note describes a simple and practical technique
for determining the “principal” camera calibration values using
a single image exposure and three scene distance measurements.
The associated calibration process can be completed in a few min-
utes time and requires only simple algebraic computations easily
performed with a common calculator or spreadsheet application.
The technique’s simplicity and effectiveness are demonstrated
by estimating the principal distance for a smart phone camera.
The obtained calibration results are validated by using them
to perform simple three-dimensional (3D) object reconstruction
operations using an independently acquired pair of images from
the same camera. Evaluation of calibration data precision and
independent assessment of the subsequent reconstruction test
results both indicate that the proposed method is effective.

Index Terms—Photogrammetry, Computer Vision, Camera
Calibration

I. INTRODUCTION

A. Background

Camera calibration is a concept that is fundamental in the
formulation of photogrammetry and computer vision applica-
tions. The calibration model may be expressed implicitly as
part of a more general image formation mathematical model
or the camera may be represented explicitly by its own math
model. In the later case, it is common to utilize a calibration
process to determine specific numeric values for the various
parameters in the explicit camera model.

Camera models range from simple to sophisticated. Some-
times, a simple model is completely sufficient for a partic-
ular applications. At other times, a simple model is useful
for exploratory design/simulation work or as initial values
for computational processes that compute more sophisticated
models using iterative refinement techniques.

The vast majority of common camera systems, at their most
fundamental level, behave like a simple camera obscura1. In
this context, the camera construction includes a small aperture
(e.g. within the lens assembly) that is located some distance in
front of a geometrically flat image plane. This simple geometry
is only an approximation for real camera systems.

Even for advanced applications employing sophisticated
camera models, it is frequently useful to quickly estimate the

1Historically, a camera obscura is associated with a darkened room inside
of which an observer sits. The room is light tight with the exception of
a small hole in one wall that emits light from an outdoor scene. Light
entering the room though this hole strikes the far wall of the room and
produces a faint (inverted) image observable by the person inside - cf.
https://en.wikipedia.org/wiki/Camera_obscura

basic camera properties using a simple pinhole model. Also,
it is often convenient if the computations can be done with
simple algebra and arithmetic so that results can be computed
with a simple calculator or spreadsheet application without
having to resort to complex data fitting tools and processes.

B. Approach

The simple method, described herein, allows recovering
the camera principal distance given only two detector image
position measurements and a known object space angle which
can be determined quickly and easily with three distance
measurements. The overall calibration process can be com-
pleted in a few minutes time requiring only simple algebraic
computations that can be performed easily with an arithmetic
calculator or spreadsheet application.

The derivation provides an algebraic expression for principal
distance value in terms of the roots of quadratic equations.
When the geometric configuration is sufficient to determine
a unique physical solution, the presented method provides
a unique solution. For weak geometric configurations, two
physically meaningful solutions are possible for which the
described method provides both.

The technique is valid for cameras with optical systems
that approximate rectilinear image formation: i.e. for “nor-
mal” optical system designs with relatively low distortion
characteristics. The pinhole perspective model often provide
reasonable results for the majority of typical consumer devices,
surveillance cameras, and industrial monitoring systems. The
simple pinhole model can be expected to breakdown for super-
and ultra-wide angle and fish-eye optics.

The simplicity and effectiveness of the technique are
demonstrated by describing calibration of a smart phone cam-
era by measuring two features on a single image and recording
three object distances measured with a retractable steel tape.
The validity of the obtained camera calibration is assessed
by computing a classic three-dimensional (3D) coordinate
reconstruction from a pair of additional photographs taken
with the same camera.

II. METHODOLOGY

A. Camera Concepts

The geometric characteristics of a camera obscura (aka
“pinhole camera”, “central perspective projection camera”) are
concerned with the location of the light admitting aperture
relative to the plane on which the image is formed.

For a typical modern camera, the image plane is the surface
of a light sensitive semi-conductor devics (generally a CMOS
or CCD). The detector cells (aka “pixels”) on the device form
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a natural coordinate system, in terms of “row” and “column”
directions. For modern manufacturing techniques, the surface
of the detector is highly isotropic with equal and uniform pixel
spacing in both row and column directions. In addition, the
detector surface is generally very flat and may be considered
planar. Thus, the physical detector construction itself provides
a natural two-dimensional (2D) Cartesian coordinate frame.

The 2D detector coordinates can be extended mathemat-
ically into a three-dimensional (3D) Cartesian coordinate
frame. This is done by defining a direction that is orthogonal
to both the row and column directions on the detector and
associated with the same units of measurement. By convention
herein, this third axis is positive outward from the detector
surface.

The 3D coordinate frame tied to the detector is the cam-
era’s “interior” coordinate frame. The simple “pinhole-model”
camera calibration is associated by the location of the entrance
aperture. This location may be represented as a vector that is
expressed in the camera’s interior detector coordinate frame.

B. Mathematics Formulation

The mathematical formulation below touches on a few
concepts from geometric algebra (GA) [1], [4] including use
of simple algebraic operations to manipulate vectors, and
suggesting that the optical angles are better represented as
bivector entities. However, the fundamental operations and
results are easily understood in terms of real algebra and basic
plane trigonometry.

The notation employed herein follows that of Hestenes [1],
in which scalars are represented with lower case Greek letters,
vectors with lower case Roman letters, and bivectors with
upper case Roman letters.

Geometric concepts are expressed in terms of the relation-
ship between two coordinate systems:

Ref An arbitrary “Reference” coordinate frame (e.g an
“object space” or “world frame”)

Det The “Detector” surface of an image sensor associated
with the camera (e.g. the coordinate frame associated
with a CMOS or CCD array)

For computational purposes, each of these coordinate system
can be associated with a collection of mutually orthogonal,
dextral, unit basis vectors denoted as {e1, e2, e3}.

C. Simple Camera Model

For ideal central perspective image formation a camera
model can be associated with the following conditions rep-
resenting extreme limit cases of a more general model such
as in [2], [3]. For the simple “pinhole” camera model,

1) Entrance pupil may be approximated as a point with
location that is fixed relative to the optical system (and
camera body)

2) Exit angle equals entrance angle (i.e. assume no distor-
tion or other aberrations)

3) Exit pupil is approximated as a point with location fixed
relative to the optical system (and camera body)

4) Detector is positioned such that the boundary of its
active surface is centered on the optical system exit
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Figure 1. Exterior space angle, α = |A|, defined by two object points at x1
and x2 relative to camera station at t. The camera station is the location of
the optical system entrance pupil as expressed in the exterior reference frame.
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Figure 2. Interior space angle defined by two detector locations, m1 and m2,
relative to optical system exit pupil at location, h, expressed in the detector
reference frame. The detector locations are a distance, µ1 and µ2 from the
pupil, subtend the angle, β = |B|.

axis and the (assumed to be planar) sensor surface is
orthogonal to the exit axis.

D. Geometric Configuration

Referring to figure 1, let vector, t, represent the location of
the entrance pupil as it is expressed in the Ref frame, and
let vectors, x1 and x2, represent two arbitrary but distinct
locations with values expressed also in the Ref frame. Denote
the target range distances from t to x1 and x2, by respective
scalar values, λ1 and λ2, defined for j = 1, 2, as

λj ≡ |xj − t| =
√

(xj − t)2 (1)

Let bivector, A, represent the entrance angle, and bivector,
B, represent the exit angle. The distortion free model is
represented as the identity relationship, B = A. However,
since the 3D nature of the angle geometry is not needed herein,
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introduce scalar values, α and β, to represent the entrance and
exit angle magnitudes

α ≡ |A|
β ≡ |B|

and express the central perspective condition as (ref. sec-
tion II-C assumption 2)

β = α (2)

Let vector, h, known as the “principal vector2”, represent
the location of the exit pupil as it is expressed in the Det frame.
Also let vectors, m1 and m2, represent two image locations
expressed in the Det frame, while scalar values, µ1 and µ2,
represent the respective magnitudes,

µj ≡ |mj − h| =
√

(mj − h)
2 (3)

These relationships are illustrated in figure 2.
The detector positioning relationship relative to the optical

system exit axis (ref. section II-C assumption 4) may be
summarized by expressing the principal vector, h, relative to
an orthonormal vector basis associated for the detector, via

h = ηre1 + ηce2 + ηe3

where the scalar value components, ηr, and ηc, respectively
represent the row and column location of the principal point
(of autocollimation) and the scalar value η is the principal
distance value of present interest (cf. figure 2).

1) Parameter Domains: The λj represent physical dis-
tances and therefore expected to be non-negative. In addition,
the object point locations should not be coincident with the
camera station, so that

0 < λj

Similar arguments apply to the intrinsic distances, µj , so that
also,

0 < µj

The principal distance, η, may also be required to be non-
negative (by appropriate selection of detector frame conven-
tions). It should also be non-zero to avoid degenerate imaging
geometry, so that,

0 < η

For the ideal case of central perspective projection onto
a flat, and finite, image surface, the exit angle is limited in

2As the term is used herein, the principal vector, h, may be decomposed as
a sum of two vector constituents. The first constituent lies in the plane of the
detector and has two components that represent the location of the “principal
point” (of autocollimation). The second constituent is the component of
h perpendicular to the detector surface. The magnitude of this orthogonal
component is known as the “principal distance”. For the special case in which
a camera is focused at infinity, the principal distance is approximately equal to
the optical system focal length. However, in general the principal distance has
a somewhat abstract interpretation. Its numeric value is determined as a “best
fit” to the pinhole central perspective model and therefore may be affected by
other considerations (various high order optical effects and aberrations).

magnitude3. By virtue of the distortion free condition, the
entrance angle is correspondingly limited. This condition may
be expressed as

(|α| = |β|) < π

2

In particular, this means that the cosine cannot assume a
negative value. A more stringent condition may be expressed
as,

0 < (cosα = cosβ) < 1 (4)

in which the left hard inequality requires also avoiding the
zero-angle condition associated with a physical configuration
in which object locations, x1, x2 and t are collinear.

2) Detector-Axis Relationship: Since the detector surface
is assumed flat, the measurement vectors, mj , must lie in the
plane of the detector which itself is orthogonal to the optical
exit axis. For exit axis aligned with the e3 basis vector, this
means that,

mj · e3 = 0

Therefore,
mj · h = mjrηr +mjcηc

where mjr and mjc are, respectively, the row and column
components of the measured detector position for the j-th
point.

For the simple camera model in use here, the principal
point components, ηr and ηc, are fixed (at the center of the
detector) and readily known in terms of the overall image size.
Therefore, given a specific measurement, mj , for a location
on the detector, the value of mj ·h, is completely determined.
In particular, for this assumed simple camera model, the scalar
value, mj ·h, is entirely independent of the principal distance,
η.

Represent this measurement construct with scalar value,
ρ2j , defined in terms of detector row and column location
measurements, as

ρ2j ≡ mj · h

which may be expanded,

ρ2j = mjrηr +mjcηc (5)

E. Angularity Relationships

1) Entrance Angle Magnitude: Introduce vector, d, to rep-
resent the object point separation via definition,

d ≡ x2 − x1

and square each side of this relationship to obtain,

d2 = x22 − 2x2 · x1 + x21

3This is a limitation of the pinhole / central perspective projection model
and not a limitation of actual optical systems. Physical lenses exist with larger
than 180-deg full field of view. The fact that real optical systems exceed this
limit, demonstrates that the simple perspective projection model, at best, is a
simplifying approximation only valid for a restricted subset of actual optical
systems. In general, validity of the approximation improves for increasingly
more telephoto optical systems, and degrades with increasingly wider angle
ones. The central perspective model fails completely for substantially non-
rectilinear designs such as super-wide, ultra-wide angle, fish-eye and other
extreme optical systems.



4

Simultaneously, the entry angle magnitude, α, satisfies the
Ref space triangle law of cosines relationship, via

d2 = λ21 + λ22 − 2λ1λ2 cosα

which may also be expressed,

cosα =
λ21 + λ22 − d2

2λ1λ2
(6)

2) Exit Angle Magnitude: In similar fashion, let the relative
detector point separation be represented by vector, r, defined
as

r ≡ m2 −m1

and square each side to obtain,

r2 = m2
2 − 2m2 ·m1 +m2

1 (7)

The exit angle magnitude, β, satisfies the corresponding
vertex magnitude relationship via the law of cosines,

r2 = µ2
1 + µ2

2 − 2µ1µ2 cosβ

or, as

cosβ =
µ2
1 + µ2

2 − r2

2µ1µ2
(8)

3) Coangularity Condition: The ideal perspective condition
may be expressed as β = α, which also requires that

cosβ = cosα

This equivalence may be expressed in terms of the above
triangle relationships from equation 6 and 8,

λ21 + λ22 − d2

λ1λ2
=
µ2
1 + µ2

2 − r2

µ1µ2

The left hand side, may be evaluated in terms of measured
object space distances, while evaluation of the right hand side
requires knowledge of camera interior parameters including
the principal distance.

For convenience of notation, introduce a new scalar pa-
rameter, γ, that is proportional to the common value in this
equivalence. For calibration purposes, it is particularly useful
to associate γ more closely with the object space quantity on
the left and to define the parameter, γ, as

γ ≡ λ21 + λ22 − d2

λ1λ2
= 2 cosβ

This allows expressing the coangularity condition as

µ1µ2γ = µ2
1 + µ2

2 − r2 (9)

4) Squared Relationships: Square both sides of equation 9
to obtain

µ2
1µ

2
2γ

2 =
(
µ2
1 + µ2

2

)2 − 2
(
µ2
1 + µ2

2

)
r2 + r4 (10)

Since both the µj and r2 are inherently positive, squaring
these quantities does not significantly change the underlying
relationship. However, since γ can be either positive or neg-
ative, the squaring operation conflates two cases and thereby
introduces a possible secondary solution.

I.e. this squared relationship, still represents the true physi-
cal configuration associated with γ = 2 cosβ, but the squaring

operation also introduces an artificial solution associated with
the vertex angle supplement, −γ = 2 cos (π − β). Thus,
any inversion process to determine, η, should be expected to
require also a disambiguation consideration.

To evaluate this relationship in terms of the (unknown)
principal distance parameter, begin by squaring both sides of
equation 3 to obtain

µ2
j = (mj − h)

2

= m2
j − (mjh+ hmj) + h2

= m2
j − 2mj · h+ h2

The middle term on the right may be expressed in terms of
relationship 5, so that

µ2
j = m2

j − 2ρ2j + h2 (11)

Employ this interior distance relationship for each point to
express the product

µ2
1µ

2
2 =

((
m2

1 − 2ρ21
)

+ h2
) ((

m2
2 − 2ρ22

)
+ h2

)
Distribute the multiplications to yield

µ2
1µ

2
2 = h4

+
[
m2

1 +m2
2 − 2

(
ρ21 + ρ22

)]
h2

+
[(
m2

1 − 2ρ21
) (
m2

2 − 2ρ22
)]

Introduce intermediate scalar, ν2, defined as,

ν2 ≡ 1

2

(
m2

1 +m2
2

)
−
(
ρ21 + ρ22

)
(12)

and scalar, ω4, defined as

ω4 ≡
(
m2

1 − 2ρ21
) (
m2

2 − 2ρ22
)

to express the product of squared interior distance values
as,

µ2
1µ

2
2 = h4 + 2ν2h2 + ω4 (13)

Note that the exponents included in the expression of
quantities, ν2 and ω4, are used primarily to track the algebraic
order with which they are defined. In this way, equations are
expressed with notation in which terms have homogeneous
order. The numeric values associated to the quantities, ν2 and
ω4, may be negative. However, this is not a concern since not
roots of these values are required.

As a next step in relating equation 10 to principal distance
parameters, express the sum of squared interior distance values
by adding equation 11 for the two cases of j = 1, 2 to yield(

µ2
1 + µ2

2

)
= m2

1 +m2
2 − 2

(
ρ21 + ρ22

)
+ 2h2

This may be expressed in terms of intermediate parameter, ν2,
as (

µ2
1 + µ2

2

)
= 2

(
ν2 + h2

)
(14)

Next, square this relationship to obtain,(
µ2
1 + µ2

2

)2
= 4

(
ν4 + 2ν2h2 + h4

)
(15)
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Figure 3. Perspective representation of example toroidal surface determined
by two detector locations and the exit angle magnitude. The checkerboard
represents the detector surface, while the blue cylinder is the optical system
exit axis which, for simple camera here, is assumed to be orthogonal to the
detector surface. Compare with figure 4 (left) which illustrates the cross
section view in plane of detector surface. This represents one the “four-
solutions” cases with two solutions above and two (not visible here) below
the detector surface.3

5) Return to Coangularity: Substitute equations 13, 15
and 14, to re-express relationship 10 as,(

h4 + 2ν2h2 + ω4
)
γ2 = 4

(
ν4 + 2ν2h2 + h4

)
− 4

(
ν2 + h2

)
r2

+ r4

Rearrange and gather terms by order of h,

0 =
(
4− γ2

)
h4

+
(
8ν2 − 2ν2γ2 − 4r2

)
h2

+
(
4ν4 − 4ν2r2 + r4 − ω4γ2

)
This is a quadratic expression in terms of h2, for which

all the coefficients are completely established in terms of
measured values. I.e.

κah
4 + 2κbh

2 + κc = 0 (16)

where

κa ≡ 4− γ2

κb ≡ 4ν2 − ν2γ2 − 2r2

κc ≡ 4ν4 − 4ν2r2 + r4 − ω4γ2

Two candidate solution values, ȟ2±, may be computed im-
mediately from the quadratic formula. I.e.,

ȟ2± = −κb
κa
±

√(
κb
κa

)2

− κc
κa

with,

κb
κa

=
4ν2 − ν2γ2 − 2r2

4− γ2
κc
κa

=
4ν4 − 4ν2r2 + r4 − ω4γ2

4− γ2

Figure 4. Domains for solution values, ȟ2±. Detector-plane cross section view
of the toroidal solution surface. The line segment between points m1 and m2

form the axis of revolution about which a circle arc is revolved. The (poloidal)
radius of the arc is defined by locus of detector locations from which points
m1 and m2 subtend angle β. The two solution domain correspond with the
principal point being inside the torus such that the optical axis pierces the
torus only twice (once above and once below the detector plane). The four-
solution domains correspond to the principal point being outside the torus
(cf. figure 3), while the optical axis enters and leaves the torus volume both
above and below the detector surface. The case on the left corresponds with
an accute angle, β, while the case on the right corresponds with an obtuse
angle β.

If there are two real positive solutions, then the two values
of ȟ2± will subsequently produce two solutions that are slightly
closer or further from the detector. These situation can be
understood geometrically as the intersection of the optical axis
with a toroid of revolution as visualized in figure 3 with a
detector plane cross-section diagramed in figure 4. In the case
of dual solutions, additional information is needed to select
which of the ȟ2± solutions is appropriate to the application at
hand.

For a given solution, ȟ2, representing one of the ȟ2±,
equation 16 may be expanded and rearranged to obtain an
expression for γ2 in terms of ȟ2, as

γ2 =

(
2ȟ2 +

(
2ν2 − r2

))2
ȟ4 + 2ν2ȟ2 + ω4

The two roots, γ± = ±
√
γ2, correspond to a pair of supple-

mentary angles, β±, via

γ = 2 cosβ+

−γ = 2 cos (π − β−)

To obtain a solution for principal vector, h, note that

h2 = η2r + η2c + η2

so that

η =
√
ȟ2± − η2r − η2c

Here, only the positive root is relevant based on physical
considerations (the negative solution corresponds with optical
system “behind” the detector).
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a) Special Case - Single Solution: For the case of one
solution (above the detector), the discriminant,

(
κ2b − 4κaκc

)
,

should be zero, and therefore, the single root is associated
with,

ȟ2 = −κb
κa

which may be expressed as

ȟ2 =
−4ν2 + ν2γ2 + 2r2

4− γ2

F. Computational Summary

The preceding developments and equations may be summa-
rized as a computational recipe:

• Use detector size width and height to determine the row
and column coordinates of the detector center (ηr, ηc)
expressed in terms of interior with values expressed in
Det units (e.g. [pix]). For the current simplified camera
model, this location represents the (assumed) principal
point of autocolimation.

• Establish the inter-point distance,
√
d2 , and range from

station distances, λ1, and λ2 with values expressed in
[Ref] units.

– One approach is to measure the distances,
√
d2, λ1

and λ2, directly (e.g. via steel tape measure or laser
range finder)

– An alternative is to use survey techniques (e.g. via
GNSS) to establish 3D Ref frame coordinates for
camera station vector, t, and the two object point
vectors, x1 and x2, then compute distances via,

d2 = (x2 − x1)
2

λj =

√
(xj − t)2

– Another approach is to observe the object space
angle directly by acquiring an image with camera
positioned at the vertex of an object with known apex
angle (e.g. from top of a gravel pile having a known
angle of repose).

• Obtain, m1 and m2, by directly measuring the two
image points of interest in Det frame coordinates (e.g.
[pix] units). Use these values to compute intermediate
parameters

– Compute observation parameter reductions,

γ =
λ21 + λ22 − d2

2λ1λ2

r2 = (m2 −m1)
2

ρ2j = mjrηr +mjcηc

– Then, compute intermediate parameter values

ν2 = m2
1 +m2

2 − 2
(
ρ21 + ρ22

)
ω4 =

(
m2

1 − 2ρ21
) (
m2

2 − 2ρ22
)(

ν2 − r2
)

= 2
(
(m2 ·m1)−

(
ρ21 + ρ22

))

Figure 5. Source photo after simple edge-detection to emphasize features of
interest around the door frame. Barely visible as the featureless region to left
side of image is the stairway rail having top end near left edge (about 1/3
way from top_ and bottom end appearing near (and occluding) the lower left
corner of the door frame. The camera lens was held close to the top corner
of the rail as practical.

– Use these to evaluate quadratic coefficients

κa ≡ 4− γ2

κb ≡ 2
(
ν2 − r2

)
− 1

2
ν2γ2

κc ≡
(
ν2 − r2

)2 − ω4γ2

• Solve the quadratic to obtain intermediate root candidates
via the general quadratic formula4,

ȟ2± =
−κb ±

√
κ2b − κaκc
κa

If there are two (real valued) solutions, additional infor-
mation is needed to resolve which of the ± expressions
to use.

• As a last step, estimate the principal distance value(s) via,

η =
√
ȟ2± − η2r − η2c

III. RESULTS

A. Formula Verification

The recipe and formulae described in the previous section
have been implemented in a computer program and verified
with simulated numeric data. The simulation results (not
presented here) verify that the various formulae are correct.

B. Real Photo Calibration

To assess the method with actual imagery, a photo was
acquired from a smart phone camera looking down a short
flight of stairs and capturing the corners of a standard door.
The camera lens was held close to the corner of the rail
on the stairs in order to provide an easily identified camera
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Table I
DETECTOR SIZE CHARACTERISTICS

Value [pix]
Format 3120 x 4160
ηr 1560
ηc 2080

Table II
IMAGE FEATURE MEASUREMENTS

(row,col) [pix] Uncertainty [pix]
m1 (162., 2683.) 5.
m2 (2542., 1739.) 5.

station location. Figure 5 shows the source photo after image
processing to emphasize edge features of calibration relevance.

The camera detector properties are summarized in table I.
Distances were measured using a standard retractable steel

tape. The measured distances correspond to those indicated by
the annotations in figure 6:

• λTL Distance from rail corner (camera station) to top left
(TL) corner of door frame

• λBR Distance from rail corner (camera station) to bottom
right (BR) corner of door frame

• |dD| Distance along diagonal of door frame
Measured values presented in table III along with approximate
measurement uncertainty estimates. The corresponding image
features were measured by recording detector row and column
locations as presented in table II.

With this experiment configuration, the object space diag-
onal, d, traces a line that crossing the image format near the
detector center with one end on either side of the center. This
is a particularly strong geometry for calibration. Indeed the
solution process returns only one valid root which is well
defined.

Using the measurements from table III and II in the for-
mulae of section II-F produces a principal distance estimated
value,

η = 3112 [pix]

Uncertainty in this value may be estimated numerically. A
simple Monty Carlo style simulation using the same geometric
configuration as for the observed data allows assessing the
overall solution sensitivity and precision. The simulation in-
cludes two cases, “A” and case “B”, associated with different
magnitudes of pseudo-random error.

Simulation case “A” is computed with values representative
of the actual measurement errors associated with the trial

4The quadratic formula may be expressed in various forms with different
numeric stability properties depending on specific data values.

Table III
OBJECT DISTANCE MEASUREMENTS

Distance Best [cm] -Uncertainty +Uncertainty
λTL 238. −.0 +1.
λBR 328. −.0 +1.√
d2D 230. −.5 +.5

Figure 6. Annotation on top of (edge detect) image to identify which object
distances are measured. The camera was held with lens entrance near top of
stair rail at left edge of image. The object point range distances to top and
bottom of door are indicated as is the door diagonal used for computations.

Table IV
VALUES USED FOR MONTY CARLO SIMULATION

Parameter Mean 1-Sigma-A 1-Sigma-B
(row,col) [pix] [pix] [pix]

m1 (162., 2683.) 5. 1.
m2 (2542., 1739.) 5. 1.

[cm] [cm] [cm]
λTL 238.5 .75 .3
λBR 328.5 .75 .3√
d2D 230. .5 .3

measurement process conducted hastily without great care.
The error model for simulation case “B” is more typical of
what can be expected when measurements are completed with
reasonable care.

For the Monty Carlo simulation, the measurements are
represented by samples drawn from pseudo-random normal
probability distributions configured with the mean and dis-
persion values presented in table IV. The resulting principal
distance distributions are presented in figures 7 and 8.

The precision estimate, computed using actual experiment
uncertainties, indicates a standard uncertainty a bit better than
15 pixels. Given the principal distance value of about 3100
pixels, this is a relative precision on the order of

ση
η
' .5 %

or about one part in 200.

C. 3D Object Measurement Validation
Although the camera calibration results discussed above are

consistent with expectation, it’s useful to check the calibration
with an independent process. To this end, the same smartphone
camera was utilized in a simple 3D (three-dimensional) object
reconstruction (aka structure from motion) project.

The results of the photogrammetric reconstruction (using the
camera calibration described above) are compared with inde-
pendent field measurements acquired with a retractable steel



8

Figure 7. Distribution of principal distance values for simulation case “A”
representing the actual test case including relatively careless measurement
gathering. The mean and 1-sigma values for a normal distribution fit are
3117.7 and 14.4 [pix].

Figure 8. Distribution of principal distance values for simulation case “B”
representing a hypothetical situation in which reasonable care is taken during
measuring operations. The mean and 1-sigma values for a normal curve fit
are 3117.7 and 4.9 [pix].

tape. This comparison provides an independent assessment of
the quality of the calibration, since the validation imagery,
validation image feature measurements and the reconstruction
processing software are distinct from that used in the calibra-
tion process.

The validation project consists of the following steps:

1) Acquire and measure imagery. Collected here as a
classic “convergent stereo pair” configuration. Measure
row/column locations for various (arbitrary) correspond-
ing image feature locations in each image of the pair.

2) Compute a “relative orientation” (RO) relationship be-
tween the two image exposures (using available custom
software). Treat camera as a “metric camera” using the
camera model with values as determined in section III-B
and estimate values for the five parameters representing
general RO degrees of freedom. Compute 3D point coor-
dinates via space intersection using the RO solution. At

Figure 9. Stereo pair used for 3D object geometry reconstruction. The indi-
cated image features, in conjunction with the camera calibration determined
in section III-B, were utilized to compute a 3D stereo module using a standard
relative orientation algorithm.

Figure 10. Check distances used to assess 3D object reconstruction quality.
The heavy lines identify the individual pairs of 3D points used to define check
distances.

Figure 11. Residual erros in object reconstruction associated with the check
distances identified in annotation of figure 10. The model distances are
computed by relative orientation algorithm and expressed in an arbitrary
coordinate frame and “model units [mu]”. A scale factor (computed using a
single measurement of one diagonal across he table top) is applied to express
distances in meters in the second “Model Distance” column. The “Ref Dist”
values were measured using a retractable steel tape. The “Resid” column
displays residual values (RefDist less ModelDist). The summary “AbsDev”
value (i.e. 9 millimeters) is the average absolute deviation of the residuals
and is entirely consistent with the a prior uncertainty of object distance
measurements utilized during camera calibration (cf. table III).
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this point all 3D model points are expressed in arbitrary
“model units” or “[mu]” (the model scale is determined
such that stereo baseline is exactly one [mu]).

3) Compute a model scale factor. Measure one of the table
top diagonals (top103 to top104) using the steel tape to
obtain the diagonal in Ref units (of meters). Compute
scale factor as ratio of the Ref distance (expressed in
[m]) with the corresponding model distance (expressed
in [mu]).

4) Field measure check distances. Use steel table and
record values between pairs of points of interest that;
can be measured with a steel tape (e.g. not having to
pass through solid objects); and are representative of
the full 3D shape of the table

5) Compute and analyze check distance results. Evaluate
distances between appropriate combinations of model
points to obtain model distances in the model frame
(in [mu]) for each of the field measured distances.
Apply scale factor to express these the computed check
distances in Ref frame units (in [m]).

6) Compare the computed check distance values with the
corresponding field measured values to report differ-
ences and statistics.

Figure 9 presents the two images that form the stereo pair used
for 3D object reconstruction. The image measurements visible
in this figure were used as tie points for relative orientation
computation, along with camera calibration values determined
in section III-B.

Since the relative orientation solution immediately provides
3D coordinates for all tie points, the tie points were placed on
feature locations convenient to use for check distances. The
annotation in figure 10 identifies which inter-point distances
are included in the check distance evaluation process.

The computed check distances, field measured check dis-
tance measurements and a comparison of the two are presented
in figure 11.

Overall the 3D object reconstruction validation process is
entirely consistent with estimates and expectations developed
in conjunction with the camera calibration. I.e. the 9 mm table
reconstruction average error magnitude compares well with the
approximate 1 cm uncertainty in the measured distances used
for camera calibration.

IV. CONCLUSIONS

The described experiment results demonstrate that the cali-
bration process is effective. It is capable of providing reason-
able quality approximation of a camera’s principal distance
values using a single photo and a few easy-to-acquire object
measurements.

The precision of the results may seem poor by engineering
grade photogrammetry standards which often report results
with precision expressed in fractions of a pixel. However,
these results are obtained from only five simple observations
(two image points and three object distances) and with simple
algebraic computations.

The result quality should be more than sufficient for general
initialization type use such as bootstrapping high precision

iterative algorithms (e.g. fully rigorous bundle adjustment
methods), and likely also good enough for many applications
which are satisfied with solution precision better than a percent
or so.

The example calibration case involves a strong geometric
configuration which immediately produces a unique solution
with relatively good numeric precision. However, for weaker
imaging geometries, there can be a physically real ambiguity
in the computed solution values. In the weak geometry cases,
the ambiguity is associated with attempting calibration when
not enough information is available from a single object space
angle, and generally should be avoid when practical.

For situations in which calibration must be attempted with
weak imaging geometry, then additional information is neces-
sary to obtain a unique solution. This information could come
from various sources. One obvious on approach is to observe
an additional angle relationship(s) within the same photo by
measuring additional object distances, then identify which of
the multiple solution values are in common to each case.

However, if practical camera calibration is the intended goal,
then some minimal care should be taken to acquire calibration
images in which the corresponding image features appear
approximately on opposite sides of the image relative to the
center of the image.

Overall, the described process is relatively easy. Evaluation
of the precision of the computed calibration and analysis of the
3D reconstruction validation results indicate that the proposed
method is effective.
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