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Abstract—This technical note describes basic ray tracing

formulae for a simple cataoptric imaging system comprising
a generic perspective imaging camera in combination with a
reflective spherical ball. It describes the associated optical ray
geometry utilizing the mathematical framework of geometric
algebra. Validity of the developed math model is demonstrated by
rectifying a real photographic image taken with a smart phone
and a mirrored spherical ornament. Although the general results
are entirely standard, the treatment contains a touch of novelty
within the mathematics of the geometric algebra formulation.
Ray reflection is expressed in terms of a spinor-valued quadratic
equation that encodes the complete three-dimensional geometry
of the reflection operation. Solution of this equation determines
the location on the sphere at which a ray, emanating from an
arbitrary object point, is reflected toward the imaging camera.
Although quadratic in nature, the reflection equation involves
non-commutative elements and an analytical solution is not
obvious. An effective and efficient numeric solution is presented
and demonstrated to work well with actual image data.

I. INTRODUCTION

A simple cataoptric system may be constructed trivially by
photographing a spherical reflector using a generic perspective
camera system. Figure 1 illustrates this situation in which a
holiday ornament acts as the reflective element placed in front
of a standard smartphone camera. To be technically correct,
the combination illustrated is actually a catadioptric system
comprising both mirrored ball and also the refractive camera
system optics. However for current purposes, the reflection
from the mirror is of primary interest and the reflective
cataoptric behavior is emphasized.

This brief technical note describes an exact mathematical
description that can be used for reconstruction of object-
space ray directions in association with the reflected geometry
recorded by the perspective camera.

It is relatively easy to perform the inverse ray trace leaving
from the camera system, reflecting from the sphere and
continuing into object space and this inverse direction has a
simple closed form solution. However, tracing in the forward
direction, following the path of physical photon propagation,
is not as simple.

The forward ray trace requires determining a point of
reflection on the sphere surface that corresponds to an arbitrary
(but otherwise known) object point location. The point of
reflection must be determined in such a way that the reflected
ray propagates directly toward the camera entrance pupil. This
forward case is more involved, because the direction of the
ray recorded at the camera is also unknown. Tracing in the
forward direction is the primary focus herein. However, for
completeness, a solution to the inverse problem is presented
in appendix B.

Figure 1. Simple reflective optical system comprising perspective camera
viewing a reflective spherical ball. The top portion is an image directly
recorded by a smartphone camera while pointed toward a front-silvered
spherical ornament. The bottom section shows a restored image created with
the formulae presented herein. The rendered image is produced by projecting
restored ray directions onto a virtual cylindrical screen.

A. Conventions and Notations

This development utilizes the mathematical framework of
Geometric Algebra1 with conventions and notation generally
following those of Hestenes [2] including:
• Scalar quantities are represented with lower case greek

letters (α, β, γ, . . . )
• Vector quantities are represented with lower case roman

letters (a, b, c, . . . )
• Bivector and Spinor quantities are represented by upper

case Roman letters (A,B,C, . . . )
• The magnitude of a vector, x, is denoted as |x|, where
|x| =

√
x2 =

√
x · x

• Unit direction associated with any non-zero vector, x, is
denoted by x̂, where x̂ ≡ x

|x| = x√
x2

II. METHODOLOGY

A. General Formulation

1) Incidence Plane: The geometry of the incident plane is
illustrated in figure 2. Let the plane of incidence be denoted
with unitary bivector2, I , which may be determined in terms of

1The Cambridge web site [1] provides a number of introductory materials
and links that describe the basic concepts and universal applicability of
“Geometric Algebra” to virtually all fields of science and engineering.

2Following the consistent notation of upper case Roman letters for bivec-
tors, an uppercase “I” is used here to denote the incidence plane direction. It
should not be confused with the notation many authors use for representing
a unitary trivector.
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Figure 2. Ray geometry associated with spherical surface. The cross-section
figure is drawn in the plane of incidence for an arbitrary individual ray of
interest. The incidence plane is determined by three points; the center of the
sphere located at the origin, the position of the camera system perspective
center (entrance pupil) at vector location, t, and an arbitrary object point of
interest at vector location, p. In physical terms, a photon leaving point, p, is
incident on the spherical surface at vector location, r, where it is reflected
and redirected toward the camera station at t. Vector, u = r−p, is aligned to
the direction of incidence, and vector, v = t− r, is aligned to the direction
of reflection.

the camera and object location positions relative to the sphere
center at the origin, as

I =
t ∧ p
|t ∧ p|

2) The Sphere: The location on the sphere, associated with
scalar radius ρ, is represented by vector, r, with |r| = ρ. The
point of incidence at location, r, may be expressed in terms
of scaling and rotation of the relative camera location, t. Let
scalar, α, represent the magnitude of the angle between t and
r, such that,

r = ρe−
1
2 Iα

t

|t|
e

1
2 Iα = ρ

t

|t|
eIα (1)

and
|t|
ρ
r = teIα (2)

3) Reflection Geometry: Let the incident ray be associated
with vector, u, defined as

u ≡ r − p (3)

and the reflected ray be associated with vector, v, defined as

v ≡ t− r (4)

In terms of unitary directions of the incident ray, û = u
|u| ,

and of the reflected ray, v̂ = v
|v| , the optical law of reflection

may be expressed as a geometric reflection through vector, r,
or equivalently through the unitary direction, r̂ = r

ρ , as

v̂ = −rûr−1 = −r̂ûr̂ (5)

4) External/Internal Reflections: For the expected two so-
lutions, one is expected to be associated with “internal”
reflection from the concave interior surface. The second so-
lution may either be an “external” reflection from the convex
surface (the one interest here), or the second solution can also
represent an internal reflection. The situation in which both
solutions represent internal reflections occur when the object
point is geometrically occluded by the sphere as viewed from
the camera station.

a) Convex Reflection: External reflection from the con-
vex outer surface is associated with the algebraic conditions,

r · u < 0

and
0 < r · v

b) Concave Reflection: Internal reflection from the con-
cave inner surface is associated with algebraic conditions,

0 < r · u

and
r · v < 0

c) Critical Reflection: The special case in which the
incident and reflected rays are tangent to the surface of the
sphere is represented by the intermediate conditions,

r · u = 0

r · v = 0

Since all three vectors are coplanar, this also implies the
reflected and incident rays are parallel, such that,

u ∧ v = 0

In geometric terms, this situation describes a right circular
cone with surface that wraps tangentially around the sphere
while having an apex located at the camera perspective center.

5) Reflection Condition: Returning to equation 5, the vec-
tor on the left and vector valued product on the right are
(anti)parallel. Therefore, the bivector grade of their product
vanishes so that the reflection condition may be represented
succinctly as,

〈v̂r̂ûr̂〉2 = 0 (6)

This homogeneous relationship is independent of overall scale,
and (for non-degenerate configurations) may be expressed as

1

|v| |u| |t|2

〈
v

(
|t|
ρ
r

)
u

(
|t|
ρ
r

)〉
2

= 0

Assuming all magnitude factors are non-zero, then the overall
leading scale factor is unimportant and the bivector factor in
brackets must vanish. Substitute relationship 2 to express this
as 〈

v
(
teIα

)
u
(
teIα

)〉
2

= 0

Note that all vectors lie in the same incidence plane and
are parallel with bivector direction, I . Therefore, all of the
incidence plane vectors conjugate-commute with the spinor,
eIα, and the reflection condition may be expressed as,〈

vteIαuteIα
〉
2

=
〈
vtue−IαteIα

〉
2

=
〈
vtute2αI

〉
2

= 0
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For later convenience, represent the reflection condition with
the negated relationship,〈

−vtute2αI
〉
2

= 0 (7)

The triple product factor, vtu, can be expanded in terms of
r, p, and t, via equations 3 and 4,

vtu = (t− r) t (r − p)
= t2r − rtr + rtp− t2p

Multiply this from the right by t, to obtain

vtut = t2rt− rtrt+ rtpt− t2pt

Substitute from equation 1 for r, to obtain,

vtut = t2
ρt

|t|
eIαt− ρt

|t|
eIαt

ρt

|t|
eIαt+

ρt

|t|
eIαtpt− t2pt

= t2
ρt

|t|
eIαt− ρ2

t2
teIαtteIαt+

ρt

|t|
eIαtpt− t2pt

= ρ |t| teIαt− ρ2te2Iαt+
ρ

|t|
teIαtpt− t2pt

Employ the conjugate-commute relationships once again to
yield,

vtut = ρ |t| tte−Iα − ρ2tte−2Iα +
ρ

|t|
ttpte−Iα − t2pt

= ρ |t|3 e−Iα − ρ2 |t|2 e−2Iα + ρ |t| pte−Iα − t2pt

Lastly, multiply from the right by −e2Iα, to obtain,

−vtute2Iα = −ρ |t|3 eIα + ρ2 |t|2 − ρ |t| pteIα + t2pte2Iα

Finally, rearrange this, to represent the reflection condition of
equation 7 as the bivector condition relationship,〈

t2pte2Iα − ρ |t|
(
|t|2 + pt

)
eIα + ρ2 |t|2

〉
2

= 0 (8)

6) Reflection Equation: This is a quadratic equation in the
(non-unitary) spinor, eαI . For convenience, introduce (non-
unitary) spinor coefficient factors, A, B, and scalar coefficient,
γ, defined as

A ≡ t2pt (9)

B ≡ −ρ |t|
(
|t|2 + pt

)
(10)

γ ≡ ρ2 |t|2 (11)

Use the coefficient parameters to express the reflection
quadratic from equation 8 as〈

Ae2αI +BeαI + γ
〉
2

= 0 (12)

The spinor coefficients, A, B, and γ, are determined by
knowledge of the camera station location at, t, the object point
location at p, and the radius of the sphere, ρ. The unitary
bivector direction, I , is completely determined in terms of t
and p. Therefore, the reflection condition is (the bivector grade
of) a spinor-valued equation quadratic in α. Solution of this
equation for scalar values of α, determines the location of the
point of reflection at r via relationship 1.

Since scalar coefficient, γ, has zero bivector grade, equa-
tion 12 is equivalent to,〈

Ae2αI +BeαI
〉
2

= 0 (13)

Unfortunately, the grade selection operation complicates the
ability to solve this equation algebraically. If the expression
inside the angle brackets were known to be zero, then the
quadratic could be solved readily (e.g. by completing the
square). However, this expression is not zero, but instead is
equivalent to some unknown scalar value. I.e. Introduce (un-
known) scalar value, σ, to express the reflection relationships
in geometric product form as,

Ae2αI +BeαI + γ = σ

In this form, both the unknown scalar values, α and σ, must
be solved simultaneously in order to determine the point of
reflection.

Because both σ and α must be determined, it is not
obvious how to proceed with an algebraic solution. However,
for general practical applications a simple iterative numeric
solution is quite effective. A standard root finding algorithm
can be used to determine the solution values of α, which
satisfy equation 13. The details of a classic Newton-Raphson
technique are described further below. In general, both roots
of the quadratic relationship can be recovered from the iter-
ative algorithm by using two distinct, readily distinguishable,
approximate starting values.

a) Scaled Coefficients: Since the quadratic equation is
homogeneous, all coefficients can be scaled by the same scalar
factor (e.g. t−2) without changing the geometric relationship.
Potentially useful scaled coefficients include:

A′ ≡ pt

B′ ≡ −ρ
(
|t|+ 1

|t|
pt

)
γ′ ≡ ρ2

This expresses the coefficients in terms that emphasize the
(non-unitary) spinor quantity, pt.

Another expression for the coefficients is in terms that
emphasize the relative general angle of p w.r.t. t, in the form
of (non-unitary) spinor, pt−1.

A′′ ≡ pt−1

B′′ ≡ −ρ 1

|t|
(
1 + pt−1

)
γ′′ ≡ ρ2

|t|2

For the special case in which the camera is located a unit
distance from the sphere center, both of these expressions
reduces to

A′ = A′′ = pt

B′ = B′′ = −ρ (1 + pt)

γ′ = γ′′ = ρ2

B. Numeric Solution

The quadratic equation 12, can be solved effectively with
a simple Newton-Raphson iterative numeric technique. This
involves determination of a suitable initial value followed by
a sequence of iterative refinements that (ideally) converge
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Figure 3. Two geometric solutions for reflection from a spherical surface.
One is convex reflection from the outside surface at r+, and the other is a
concave reflection from the inner surface of the sphere at r−.
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Figure 4. Two internal reflections associated with object point position, p,
located “behind” the sphere as viewed from the perspective center position at
t.

to the final solution. For the present case, the quadratic
relationships involved are relatively smooth and well-behaved
such that convergence is generally reliable and quick. This
leaves determination of suitable initial values as the remaining
step. For the case here, good initial values can be determined
easily by inspection of the basic geometry.

Since the reflection condition is represented by a quadratic
equation, two solutions are expected. Geometrically these
correspond to a convex reflection from the outside surface of
the sphere (the desired solution here) and a second solution for
concave reflection from the inside of the sphere. From simple
geometric intuition, these two solutions can be expected to
be distinct and correspond to vector, r, pointing in crudely
opposite directions as illustrated in figure 3.

1) Initial Estimate Determination: Denote initial values by
a naught subscript. The radius vector, r, is known to have
magnitude ρ. Therefore, only the direction, r̂0, needs to be
estimated (corresponding to the angle magnitude value α0).

a) Geometric Average Direction (Mid-Angle): One rea-
sonable starting value for the radius vector, r0, is to point it
at a location half way between the camera and object point
directions (as observed from the center of the sphere). I.e. to
align r0 halfway between the directions, t̂ and p̂.

To express this algebraically, let bivector angle, Θ = ϑI ,
represent the planar angle from direction, t̂, into direction p̂.
This bivector angle may be computed directly from t and p,
via

Θ = ln
(
t̂p̂
)

= 〈ln (tp)〉2
The initial value, α0, may then be selected consistent with half
of this angle,

α0I =
1

2
Θ =

ϑ

2
I

The initial angle magnitude can therefore be computed explic-
itly as,

α0 = −I 1

2
ln
(
t̂p̂
)

The reflection vector, r0, can be computed from this angle
magnitude via relationships in equation 1.

Alternatively, r0 may be expressed directly in terms of t
and p by considering the rotation of direction, t̂, through the
angle 1

2Θ, and then scaling by the sphere radius. E.g. combine
the preceding relationships to obtain,

α0I =
1

2
ln
(
t̂p̂
)

from which,

eα0I = exp

(
1

2
ln
(
t̂p̂
))

=

√
t̂p̂

Insert this into equation 1, in the form,

r0 = ρt̂eα0I

leading to

r0 = ρt̂

√
t̂p̂

This provides an expression for an initial reflection point
that bisects the angle between the camera and object point
directions and is expressed direction in terms of the camera
and object point locations.

To find internal reflections from the concave surfaces,
complementary initial values may be determined as

α0− = α0 + π

or, equivalently with,

r0− = −r0
b) Linear Average (Mid-Point): Another convenient

starting value for the radius vector, r0, is to point it toward
a location half way between the camera and object point
directions (as observed from the center of the sphere). This
is particularly suitable when the object distance and camera
distances are comparable3. E.g.

r ∝ 1

2
(t+ p)

3This is an exact solution for the special case in which the object distance
is equal to the camera station distance, (i.e. for |p| = |t|).
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A good initial value for the reflection point relative to the
sphere center is at distance ρ, along this direction, i.e.,

r0 = ρ
t+ p

|t+ p|

If the secondary (concave reflection) solution is of interest, a
reasonable initial value from which to find the second solution
is obtained simply by using the negative of this. Therefore, two
useful initial values for the two solutions may be specified as

r0± = ±ρ t+ p

|t+ p|

The corresponding initial values for the angle, α0, can be
determined directly by incorporating relationship 1,

r0± = ρ
t

|t|
eIα0± = ±ρ t+ p

|t+ p|

Invert this relationship to obtain the initial angle magnitude,
α0, as

α0± = −I ln

(
± t

|t|
t+ p

|t+ p|

)
(14)

The singularity at p = −t, is generally of little practical
interest since it represents an object point that is occluded
by the sphere. However, to be complete, the solution to the
reflection point for this special case can be determined by
inspection. A valid reflection point, r, can be anywhere on the
“equator” of the sphere where the equator is defined relative
to the “pole” location toward camera station at t.

2) Linearization: The Newton-Raphson root finding
method proceeds in steps wherein each step involves solution
of the linear approximation to the equation of interest. To
linearize, equation 12, introduce bivector-valued function, F ,
defined as

F (α) =
〈
Ae2αI +BeαI + γ

〉
2

For evaluation purposes, the scalar term γ, can be dropped
since it does not contribute to the bivector grade. However, it is
included here and in the following for algebraic completeness.

Using the linear approximation in the context of reflection
condition,[

F (α) ' F (α0) +
∂F

∂α

∣∣∣∣
0

(α− α0)

]
= 0

From which

α ' −
(
∂F

∂α

∣∣∣∣
0

)−1
F (α0) + α0

a) Derivative: Since bivector, I , is constant for the cur-
rent plane of incidence under consideration, ∂

∂αI = 0, and the
derivative of the exponentional term is simply ∂

∂αe
αI = eαII ,

so that,
∂F

∂α
=
〈
Ae2αI2I +BeαII

〉
2

3) Update Formula: The iterative update relationship for
computing the (n+ 1)-th value of α, given the angle magni-
tude, αn, at the previous iterative step, may be expressed

αn+1 = αn −
(
∂F

∂α

∣∣∣∣
n

)−1
F (αn)

In terms of the quadratic coefficients, this may be computed
via

αn+1 = αn −
〈
Ae2αnI +BeαnI + γ

〉
2

〈(2Ae2αnI +BeαnI) I〉2
(15)

The fractional representation is justified since the derivative
bivector and function bivectors are coplanar and therefore
multiplicatively commutative.

4) Convergence Critera: For this simple one-dimensional
root finding process, a reasonable, and generally sufficient,
process is to continue updating until changes in the evolving
angle estimate are inconsequential for the application at hand.
I.e. stop the iteration process when the (scalar-valued) update
term satisfies 〈

Ae2αnI +BeαnI + γ
〉
2

〈(2Ae2αnI +BeαnI) I〉2
< εα (16)

for some sufficiently small scalar value, εα. A typical generic
value for εα, is to use some multiple of machine precision (e.g.√
εm , where εm is machine precision). However, for many

applications, a less demanding value may be appropriate, and
the more conservative value may eliminate an iteration or two
in the iterative sequence4.

As an alternative convergence evaluation method, track the
position vector at each iteration by computing

rn = ρt̂eIαn (17)

then stopping the iterative solution process when

(rn − rn−1)
2
< εr (18)

for a sufficiently small (and/or application specific) scalar
value, εr.

Testing convergence directly with the vector location can be
particularly appropriate for applications explicitly concerned
with the 3D or surface location of the reflection point on the
sphere.

5) Solution Recipe: A recipe for the complete numerical
solution may be expressed in terms of an iterative process
with step index, n:

1) Use the available vectors, t, p, and known sphere radius,
ρ, to compute the quadratic equation coefficients, A, B,
and γ, using equations 9, 10, and 11.

2) For n = 0, determine α0, directly from t and p, using
equation 14 (using the “+” version when interested in a
convex reflection solution).

4In practice, the effect of reducing the convergence criteria is often small
since the process has expected quadratic convergence in any case. For
example, it is often typical to reach machine precision in a half dozen iterations
or less. However, if the convergence precision can be relaxed by many orders
of magnitude, then sometimes the last iteration or possibly the last two might
be avoided. Often this is not a practical concern. However, for time critical
performance it may be worth considering.
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Figure 5. Source image (full frame) used as input for example rectification
processing. Acquisition of the image involved nothing special beyond aiming
at the ball (and encouraging camera auto-focus to focus on reflected image
rather than the surrounding background). Although, here the camera is near
the same height as the ball (in actuality, a few centimeters below it), the
camera could be held in any position. The rectified image result is “leveled”
after the fact by identifying a number of points in the reflected image that
should correspond to a local horizon location in a rectified output image.

3) Iterate over integer values of n, for 0 ≤ n, until
convergence

a) Determine αn+1 via equation 15
b) Test for convergence using either equations 16

or 18 as appropriate to application at hand.
4) After convergence, the point of reflection on the spher-

ical surface, rn, is given by equation 17.
5) Assess the appropriateness of the solution using one of

the tests described in sections II-A4a, II-A4b, or II-A4c.

III. RESULTS

To confirm the various formulae presented herein, a simple
experiment was conducted with an actual image acquired
from a smartphone camera looking into a reflective sphere.
Using the ray tracing relationships presented in the preceding
sections, the source image was rectified onto the cylindrical
surface.

A. Source Image
A standard commercially available smartphone (a Motorola

Play 8) was used to photograph an outdoor scene as reflected

from a mirrored holiday ornament ball. The source image is
shown in figure 5.

B. Rectification Process

The rectification computation process, as employed in this
experiment, included the following steps.

1) General System Orientation:: The first steps involve
determining the general geometry configuration of the ball, the
perspective camera and their alignment with a desired output
coordinate frame.

1) Determine the overall geometry. I.e. assign values to
critical catadioptric system parameters including the
sphere radius, ρ, and the relative camera offset, t.

a) The spherical ornament in use has a radius, ρ,
known from the manufacturer to be 65 millimeters.

b) The magnitude of the camera standoff distance, |t|,
is determined from simple trigonometric relation-
ships given the known camera geometry (specifi-
cally, |t| = η

δ ρ where η is the camera principal dis-
tance and δ is the observed diameter of the image
of the sphere). The direction t̂, is set identically to
coordinate axis basis direction e3, which is used to
defined the principal optical axis of the catadioptric
system.

c) Alignment (attitude) of the camera was determined
by fitting a two-dimensional ellipse shape to the
edge of the ball image and then using standard
geometric relationships to determine the direction
to the ball center. Rotation of the camera about this
center is left arbitrary (defined by image advancing
row direction).

2) The geometry of the perspective camera may be ex-
pressed in terms of camera calibration data. For the
camera used here, lens distortion is extremely low, and
the perspective camera is well represented by a simple
pinhole imaging model. The principal distance for this
model was known and available from prior work.

3) Specify a geometric surface (the rectification screen)
on which to generate a rectified image. For this test,
a simple cylindrical surface is utilized. The cylinder is
assumed to have an axis that is vertical in the three-
dimensional (3D) reconstruction coordinate system.

4) Exterior attitude alignment for the ball/camera combina-
tion (relative to the 3D reconstruction coordinate frame
in which the rectification screen is defined) is determined
by:

a) Identify (manually) image point (row/column) lo-
cations for two or more points in reflection, that
correspond points that are desired to be on the
horizon.

b) These image points are used in an inverse ray trace
(ref appendix B) to compute a collection of object
space rays emanating from the sphere. Provided the
image points are correctly identified (and exterior
geometry configuration is correct), then these rays
are expected to be nominally coplanar with each
other.
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c) Compute the 3D rotation that best aligns (in least
squares sense) the inverse horizon rays with the
known horizontal direction in the reconstruction
frame.

d) For this simple experiment, the location of the
ball is (arbitrarily) set to be at the origin of the
reconstruction frame.

e) Overall, the this provides a complete exterior orien-
tation for the overall catadioptric system (expressed
with respect to the reconstruction frame in which
the virtual cylindrical screen is defined)

2) Rectified Image Rendering: For visualization, the solu-
tion geometry is used to synthesize an output image.

1) The object space surface (here the cylinder described
above) is associated with a rectification “screen” that is
partitioned into a grid of row/column cells. Each screen
cell location is associated with a single pixel cell in the
output image (i.e. the pixel locations associated with
image in figure 6).

2) The rectification process involves performing the follow-
ing computations for each screen (output) pixel5.

a) Use screen pixel (row/column) location to assign a
world location, p.

b) Apply the solution recipe from section II-B5 to
determine the reflection point location, r, located
on the sphere surface.

c) Transform the representation of location, r, from
expression in the reconstruction frame (cylinder
frame) into expression in the catadioptric system
frame.

d) Apply the camera calibration model to determine
the sensor detector location on which the image of
point r is formed.

e) Use the detector location to retrieve the corre-
sponding image pixel value (i.e. RGB color num-
bers) from the source image (ref figure 5). For this
experiment, a simple nearest-neighbor selection of
radiometric value was used6.

C. Rectified Image

The process described section III-B above was implemented
in a computer program. Using this program, the source image
shown in figure 5 was transformed into the (cylindrically)
rectified output image shown in figure 6.

D. Analysis

The experiment was performed only as a general check on
the formulae and relationships presented herein. A number

5In general, the geometry computations can be performed for a sparse
distribution of pixel locations, and those geometric results then interpolated
for use to assign locations for intervening pixel. However, for this experi-
ment, no interpolation optimizations were performed and the full geometric
computations were performed exactly for each and every pixel.

6Nearest-neighbor radiometric assignment methods can produce anti-
aliasing artifacts colloquially known as “the jaggies”. However, the nearest
neighbor radiometric assignment is often better for assessing geometric
processing quality which is the objective herein.

Figure 6. Cylindrically rectified image generated from the source image
shown in figure 5. The geometry of this image is generated using a vertical
cylinder centered on the sphere. Rows of image pixels correspond to constant
elevation value along this cylinder, while columns of images correspond to
constant azimuth direction.

Figure 7. Identification of residual artifacts associated with various ideal-
izations and approximations involved in this simple demonstration exercise.
Several effects are identified by the annotation in the imagery.

of approximations and simplifications affect the results in
addition to theoretical limitations associated drop of available
information at the edge of and behind the sphere. Several
of these effects as well as residual errors and artifacts are
identified by annotations in figure 7.

E. Performance

1) Precision/Convergence: The iterative update formula
described in section II-B3 is based on a linear approximation
of the reflection condition. For comparison, a second order
update formula is developed and described in appendix A.
However, in practice, the linear update is found to converge
sufficiently quickly (quadratically when near the solution root).
Using the second order formula can improve the rate of
convergence slightly. However it also introduces a spurious
candidate update value which needs to be considered and
complicates the process. Also, the second order update values
can diverge more easily than do the linear updates. Overall,
use of the simple linear-update iteration scheme seems most
generally practical.

F. Speed

For this single image experiment, no effort (whatsoever)
was made to improve, much less to optimize, the computation
process.
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Table I
PERFORMANCE RELATED INFORMATION

Item Values
Output Image Size 975 (rows) by 3064 (columns): 3 MPix
Input Image Size 4160 (rows) by 3120 (columns): 13 MPix
Processor (one core only) AMD Ryzen 7 2700
Time (including I/O) 2.6 sec
Time (processing only) 2.1 sec

The formula were implemented as a direct translation of the
equations as presented herein, and often repeating computation
of values used more than once. Computations are done using
general purpose Geometric Algebra operations with no attempt
to exploit computational sparsity associated with the two-
dimensional reflection plane computations.

Also geometry computations are performed in-full for every
individual output pixel (e.g. no caching of repeated/reused in-
termediate results, and no interpolation models). For practical
application work, the amount of computation generally can be
reduced by orders of magnitude without appreciably affecting
visual results.

Several data items relative to computation timing perfor-
mance (with emphasis on the sub-optimal conditions de-
scribed) are presented in table I.

IV. CONCLUSIONS

The results confirm that the developed formulae and solution
technique are valid for practical use.
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APPENDIX

A. Second Order Update

A second order approximating expression for bivector-
valued function, F ,

F (α) =
〈
Ae2αI +BeαI + γ

〉
2

may be expressed as,[
F (α) ' F (α0) +

∂F

∂α

∣∣∣∣
0

(α− α0) +
∂2F

∂α2

∣∣∣∣
0

(α− α0)
2

]
= 0

Denote the first order bivector derivative as D, and the
second order one as S, i.e.

F0 ≡ F (α0) =
〈
Ae2αI +BeαI + γ

〉
2

D ≡ ∂F

∂α

∣∣∣∣
0

=
〈
2Ae2αII +BeαII

〉
2

S ≡ ∂2F

∂α2

∣∣∣∣
0

= −
〈
4Ae2αI +BeαI

〉
2

and define scalar difference value, δ, as

δ ≡ α− α0

In terms of these values, the approximation expression is

F0 +Dδ + Sδ2 ' 0

To put in standard form, multiply from the left by S−1 to
obtain,

δ2 + S−1Dδ + S−1F0

Since all the spinors are associated with parallel planes, their
pairwise products reduce to scalar values, and this is a classic
scalar-valued quadratic equation.

Introduce scalar values, µ and ν, defined as

µ ≡ 1

2
S−1D

ν2 ≡ S−1F0

Express the quadratic as

δ2 + 2µδ + ν2 = 0

for which the solutions are

δ = −µ±
√
µ2 + ν2

Given a current estimate, αn, an improved estimate of the
root, based on second order approximation, is

αn+1 = αn + δ

B. Inverse Direction Ray Trace

Determination of the ray geometry associated with a known
image pixel is relatively straight forward (provided that the
perspective camera geometry is well characterized, as is as-
sumed here).

With reference to figure 2, the known image pixel (and
camera configuration data) effectively determine the direction
of the reflected ray, v̂. Let the scalar parameter, λ, represent
the (unknown) range from the camera to the point of reflection
on the sphere, so that v = λv̂. The camera station, point of
reflection and the center of the sphere form a triangle. The
geometric closure of this triangle may be expressed as the
vector relationship,

t− v − r = 0 (19)

Transpose r to the right hand side, and square to obtain,

(t− v)
2

= r2 = ρ2

Expand the left side

(t− v)
2

= t2 − 2t · v + v2

= t2 − 2 (t · v̂)λ+ λ2

And combine to obtain a scalar quadratic equation in standard
form,

λ2 + 2 (−t · v̂)λ+
(
t2 − ρ2

)
= 0

The solutions for the range parameter (when they exist) are

λ± = (t · v̂)±
√

(t · v̂)
2 − (t2 − ρ2)

A negative value for the radicand corresponds to the case in
which the ray incident into the perspective camera has missed
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the sphere - i.e. has traveled from point p to point t without
reflection (in which case p = −v).

For rays reflected from the convex outside of the sphere, the
smaller root value represents the point of reflection close to
the camera (i.e. λ−), while the larger range value (i.e. λ+) is
relevant for reflection from the concave inside of the sphere.

Given a solution for the range distance, λ, the reflection
point on the sphere at, r, is fully specified by rearrangement
of above relationship 19 expressed as,

r = t− λv̂

The incident ray direction, û, is determined by inverting the
relationship in equation 5

û = −r−1v̂r

The object location must be located somewhere along the
(reversed) direction of the incident ray. Introducing scalar
value, µ, as a free parameter, the object point position, p, can
be expressed as

p = r − µû

The negative sign arises here, since +û is defined as the
direction of the forward ray propagation (cf. figure 2).

In terms of observed direction, v̂, and solution vector, r, the
point location, in terms of free parameter, µ, may be expressed
as,

p = r + µr−1v̂r

For positive values 0 < µ, this describes a geometric ray
starting at the reflection point on the sphere and propagating in
a straight line toward the object point which is at an arbitrary
distance, µ. A specific value for the distance to the object
point, |p− r| = µ, is not determined by a single image7.

7A conventional imaging camera system records only direction information
while range information is lost in the image acquisition process. This
“collapse” of range information happens independent of any individual ray
reflections. However, if there are multiple reflective objects in the scene, then
multiple rays may be generated from different pixel locations within the same
perspective image and these multiple rays may be used to determine a full 3D
description of point, p. In such a case, the multiple reflective objects effectively
create a stereo-metric, multi-mirror camera configuration. However, for the
simple case of one camera and one sphere as addressed here, object range
information can not readily be recovered.


